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SUMMARY. When the intraclass correlation coefficient or the equivalent version of the kappa agreement
coefficient have been estimated from several independent studies or from a stratified study, we have the prob-
lem of comparing the kappa statistics and combining the information regarding the kappa statistics in a
common kappa when the assumption of homogeneity of kappa coeflicients holds. In this article, using the like-
lihood score theory extended to nuisance parameters (Tarone, 1988, Communications in Statistics— Theory
and Methods 17(5), 1549-1556) we present an efficient homogeneity test for comparing several independent
kappa statistics and, also, give -a modified homogeneity score method using a noniterative and consistent
estimator as an alternative. We provide the sample size using the modified homogeneity score method and
compare it with that using the goodness-of-fit méthod (GOF) (Donner, Eliasziw, and Klar, 1996, Biometrics
52, 176-183). A simulation study for small and moderate sample sizes showed that the actual level of the
homogeneity score test using the maximum likelihood estimators (MLEs) of parameters is satisfactorily close
to the nominal and it is smaller than those of the modified homogeneity score and the goodness-of-fit tests.
We investigated statistical properties of several noniterative estimators of a common kappa. The estimator
(Donner et al.,, 1996) is essentially efficient and can be used as an alternative to the iterative MLE. An

(B

efficient interval estimation of a common kappa using the likelihood score method is presented.
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1. Introduction

The kappa coefficient has been the widely accepted measure
for assessing the degree of agreement between two ratings on
the presence or absence of a characteristic, e.g., in biome-
try, psychometry, and behavior science. There are two types
of kappa: Cohen’s kappa (1960) and the intraclass version of
kappa, which is identical to Scott’s index (1955). The former is
based on a model that the probability of positive classification
by the first rating and that by the second rating are different,
while the latter assumes that the two probabilities are the
same. In this report, we limit our attentglon to the intraclass
version of the kappa or intra-rater correlation coefficient. Note
that the intraclass kappa is algebraically equivalent to the in-
breeding coefficient (Wright, 1951) in population genetics. Es-
timation of the kappa coefficient from a single set of data has
been investigated by many authors. For example, point esti-
mation has been investigated by Fleiss and Davies (1982) and
Bloch and Kramer (1989), while interval estimation has been
investigated by Donner and Eliasziw (1992), Hale and Fleiss
(1993), and Nam (2000). When multiple studies or.a stratified
study have been conducted, we would like to compare kappa
statistics and present a common or summary kappa agree-
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ment using all available information. Donner and Klar (1996)
have discussed the problems of inference on kappa statistics in
multiple samples. One of their examples of multiple samples
is a meta-analysis using data from six retrospective and four
prospective studies related to the accuracy of the technetium
bone scanning in the diagnosis of osteomyelitis (Littenberg,
Mushlin, and the DTAC, 1992). In the absence of a golden
standard for each study, it would be appropriate to examine
the studies using the kappa agreement coefficient instead of
using semsitivity or specificity. If a homogeneity test for the
ten kappa statistics was not rejected, we could make statis-
tical inference on a common kappa summarizing all studies.
Otherwise, we could undertake further analysis to determine
the source of heterogeneity (between designs, within a de-
sign, or both). Another example of the multiple-samples prob-
lem is the comparison of twin concordance rates with respect
to cigarette-smoking history, by sex and zygosity (Hannah,
Hopper, and Mathews, 1985), to investigate if the smoking
habit has a genetic component. A chi-square test for ho-
mogeneity of kappa coefficients using estimated large-sample
variance has been give by Fleiss (1981). Donner et al. (1996)
have presented a homogeneity test applying a goodness-of-fit
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(GOF) approach and recommended the GOF method over
Fleiss’s test, for a small sample size based on a result of sim-
ulation. Donner (1998) has also provided sample size formula
for the comparison of two or more kappas using a GOF test.
The GOF procedure is not based on the maximum likelihood
estimators of parameters and it may not be fully optimal. In
this article, we present the homogeneity score test using MLEs
and also a modified homogeneity score test using estimators
that are both noniterative and consistent. Qur simulations
show that the actual level of the score test is closer to nominal
in comparison with those of other tests. Problems related to
testing homogeneity and summarizing kappa agreement based
on multiple samples are in this article. We also investigated
estimators of a common kappa and their statistical properties.

In Section 2, we describe the model and notation. In Sec-
tion 3, we derive the homogeneity score test of several kappa
statistics and a modified homogeneity score test using estima-
tors that are simple and consistent. We also examine type 1
error rates of the various homogeneity tests in a simulation
study. In Section 4, we compare the sample sizes for a given
power using the modified homogeneity score test with that us-
ing the GOF procedure. Point estimates of a common kappa
are introduced and their variances are derived in Section 5.
Using a Monte Carlo experiment several non-iterative estima-
tors are compared in terms of bias and mean square error, for
small to moderate sample size and asymptotic relative effi-
ciency, for a large sample size in Section 6. Interval estima-
tion of a common kappa using the score method is presented
in Section 7. Section 8 is an exa.mple and Section 9 contains
concluding remarks.

2. Model and Notation

Consider J independent studies involving n; subjects for
j =1, 2,...,J. Each subject is rated by two examiners, or
twice by a given examiner, with ratings denoted as either
positive or negative. Denote the probabilities of a positive
and a negative rating as Pr (+) = p; and Pr (-) = ¢,
respectively, where p; + ¢; = 1 for the jth study. The n; pairs
of ratings can be divided into three categories: (+, +);
(+, =) or (-, +); and (—, —). The observed numbers
of pairs in the categories are m;, =, and z; and their
corresponding probabilities are P,;, Py;, and Py;, where the
first subscript represents the number of positive ratings
in a pair for the jth study. Define the kappa, x;, as the

correlation coefficient between two ratings in a pair, i.e.,-

ki = (Poj — P_-,)/(PJ‘IJ) = (Poj — q]))/(pJqJ)’ which ylelds the
following multinomial model:* Py;(k;,p;) = p_, +pigiki,
Py;(kj,p;) = 2p;q;(1— ;) and POJ(K’J’pJ) qg + Pig5K;

(Mak, 1988; Bloch and Kramer, 1989) for j = 1, 2,...,J.
The observed data for the jth study are summarized
in Table 1. The intraclass-correlation coefficient, «;, is
the same as the kappa by the standard definition, i.e.,

= (Py; — pej)/(1 — pe;j), where the probability of the
observed agreemen{ and that of the expected under inde-
pendence are py; = 'PZJ + Py; and p.; = pJ + qJ, respectively,
for every j. Note that the intraclass kappa and correlation
coefficient are the same only when the probability of a
positive classification is the same for all ratings for the jth
study.
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Table 1
Observations for the jth study
Category Observation
(+, =) or (= +) 15
(- "‘) To;
Sum n

3. Testing Homogeneity of Kappa Statistics
Consider a test for homogeneity of several kappa statis-

tics, ie., Hy:x; =k for j = 1, 2,...,J. From the joint
distribution of ' =(x},...,2;) where z} = (5,215, Z0;)
for j = 1, 2, , J, the log likelihood is expressed as
In Lk, p) ZJ lnL (K5, p;), where &' = (k1,Ks,...,K5)
and p’ —(pl,pg, ,pJ) The MLEs of x; and p; are
Ry = (4zgymo; — 73;)/{(2x25 + 21;)(2m0; + =1;)}  and
P; = 2@y + x1;)/(2n;), and the variance of &; is

var(k;) = (1 - 5;){(1 — r;)(1 - 2k;) + £;(2 — £;)/(2p;97)}/
n; for j =1, 2,...,J (e.g.; Bloch and Kramer, 1989). With a
common kappa over the J tables, the log likelihood is written

as

o

J
InL{k,p) = ZIDLJ'(K,PJ'), (1)

j=1

where  InLj(k,p;) = o5 - n{p;(p; + g;5)} + z1; - In{2p;q;
(1 - #)} +2o; - In{g;(g; + p;«)} and q; = 1 - p; for j = 1,
2,...,J. Denote partial derivatives as Si(k,p;) =
dInL;/0k,S;(k,p;) = OInL;/0p; and Sk(k,p) =
Z Sk{k,p;). The MLEs of x and p are the solution of
J + 1 partial equations, i.e., Sc(k,p) =0 and S;(k,p;) =

for j =1, 2,...,J. They cannot be expressed in a closed
form, but can be found numerically by an iterative procedure
(Appendix). Note that the MLEs of nuisance parameters,
Djs, are not the same as the p;s. Define normal deviate as,

2R, B5) = Se(R, B5)/{v(R, ;)}'/*
where
S (’,D;) = {@2;/(B; + GR) + x03/(§; + B;K) — n;}/(1 - R),
v(R, B;) =n;/[(1 - R{(1 ~ R)(1 - 2&) + &(2 - &)/(2F;4;)}],
and k& and p; are the MLEs of « and p;, and §; =1 —p;

for j =1, 2,...,J. The likelihood score statistic for testing
H; : k; = & for every j is
J
X2 =" 2R, 55), @)
j=1

which is-asymptotically distributed as a chi-square with J — 1
degrees of freedom. The homogeneity hypothesis is rejected
at level o when X? > X?l—a),.]—l’ where X%l—a),.]—l is the 100x
(1 — ) percentile point of the chi-square distribution with
J — 1 degrees of freedom. For computational simplicity, in
Section 5, we consider several noniterative and consistent es-
timators of a common kappa. Using the theory of homogeneity
score test extended to nuisance parameters (Tarone, 1988), we
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find a modified score statistic, e.g.,

J
Xb =) {Su(kp,5;)}/v(Rp,b;)

=1

J 2 J
*{Z SN(RD,ﬁj)} ZU(RD,ﬁj), (3)

J=1

which is asymptotically a chi-square with J — 1 degrees of free-
dom as n; — oo for a fixed J. The estimator, £p, is defined ih
(15). If the consistent estimators of « and p;’s are MLEs, then
the second term of (3) vanishes, since ), S«(&,5;) =0, and
(3) reduces to (2). The chi-square GOF test for homogeneity
given by Donner et al, (1996) is

2 J
X&= ZZ{% —n;Py(Rp,$;)Y/{n; P;;(Rp,p5)}.  (4)

i=0 j=1

A test similar to Fleiss’s is

J
Xp = 05k — k), (5)

j=1
where @&; is the inverse of an estimator of the variance of
Rj, and R, is a weighted average of &;’s (see equation [17],
Section 5). Under Hp, the GOF statistics (4) and Fleiss’s
statistics (5) are asymptotically distributed as a chi-square

with J — 1 degrees of freedom as n; — oo for a fixed J.

Consider testing homogeneity of kappa statistics assuming
pi =pforj=1,2,. JUndern,—na.ndp,—pfor
every J the MLEs of k a.nd p are & = Rk, (see Section 5) and

= (2z5. + z1.)/(2n.), where z;, = z; (Tijandn, = E‘I

=1
The homogeneity test using the score method is

. R2—R)
X% ={1-2% _f.(___
. { R SRy

J 2
E{3e ) /) o

The homogeneity is rejected at level o if X2 > X(1—a) g1 I
k; = and p; = p for every j, we can pool the J sets of data
for inference on the common kappa.

We investigate type 1 error rates of various homogene-
ity tests for small or moderate sample sizes. Results of a
Monte Carlo experiment with 10,000 simulations for (p;, ps) =
(0.2, 0.3), (0.2, 0.5), (0.3, 0.5), and x = 0.2, 0.4, 0.6, 0.8 for
(m, m2) = (20, 30), and (40, 60) are summarized in Table 2.
The empirical type 1 error rates of the homogeneity score test
using the MLEs were satisfactorily close to a nominal 0.05
level. Those of the GOF and modified score test using Ap
tended to be anticonservative and greater than those of the
score test using MLEs. Fleiss’s method provided unreliable
type 1 error rates whose discrepancy from the nominal level
was excessive: overly anticonservative in general, but conser-
vative when a kappa agreement is very strong. Table 2 indi-
cates that the homogeneity score test using the MLEs was the
best testing procedure among four methods in terms of the
type 1 error probability for a finite sample. Similar findings
were observed using homogeneity tests for kappa statistics

n;.
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Table 2
Empirical type 1 error rates of homogeneity tests for
K1 = kg = & (10,000 simulations)

n = 20,n2 =30 n = 40,712 =60
(o) s X Xp Xp Xp X3 Xo Xp X
(0.2,0.3) 0.2 .046 .055 .056 .132 .055 .057 .059 .092
0.4 .056 .064 .067 .133 .052 .055 .059 .078
0.6 .050 .059 .063 .088 .055 .061 .065 .068
0.8 .042 .065 .055 .036 .049 .053 .055 .030
(0.2,0.5) 0.2 .046 .053 .055 .145 .049 .054 .054 .087
0.4 .050 .055 .058 .131 .053 .057 .060 .079
0.6 .057 .063 .065 .095 .050 .055 .059 .070
0.8 .050 .063 .058 .039 .049 .052 .056 .032
(0.3,0.5) 0.2 .054 .055 .056 .089 .049 .050 .050 .063
0.4 .055 .058 .059 .083 .055 .056 .057 .063
0.6 .054 .057 .058 .062 .055 .058 .060 .065
0.8 .048 .054 .051 .018 .049 .050 .051 .039

Note: X2, X2, X%, and X2 refer to statistics for testing homo-
geneity of kappas usmg the score, goodness-of-fit, modified score, and
Fleiss methods, respectively.

from three samples (Table 3) based on a simulation study for
(91, po, p3) = (0.1, 0.3, 0.5), (0.3, 0.4, 0.5), k& = 0.2, 0.4, 0.6,
0.8,-and (n1, m, n3) = (20, 20, 20), and (30, 20, 10). The per-
formance of the Fleiss’s-type test is clearly unsatisfactory for
small and moderate sample sizes. To adjust the anticonser-
vativeness of the GOF test, we may apply the F-distribution
in place of the chi-square with J — 1 degrees of freedom, as
an approximate distribution of the GOF statistic for small or

~moderate total sample size. The critical value of the test at o

couldbe (J —1)- Fy_yn-s41(1 — @), where Fy_; n_5u(1 — )
is the 100x (1 — &) percentile point of the F-distribution with
J —1land n- —J 4 1 degrees of freedom. Simulations show
that the adjustment can adequately reduce the anticonserva-
tiveness of the GOF test.

o

4. Power and Sample Size

Denote & = EJ 1 "3P1455; /s 7=1T3P;4;)- The homogeneity
score test using Ap (3) under the alternative x; # & is a non-
central chi-square with J — 1 degrees of freedom and non-

centrality parameter
o= T~ (Cu) /(S )

where ¢; = 1 — 28 + k(2 — K)/{2(1 — R)p;q;} and
d; = p;(p; + a;k;)/(p; + ¢;R) + (g5 + psk;)/(g; +'P;R) ~ 1
for j = 1,2,...,J. The contribution of the second term of (7)
is usually negligible. Since the limit value of MLEs, & and
ﬁ’js, cannot be written in an explicit form, we approximate
the noncentrality parameter using & and p’'s. The asymptotic
power of the modified homogeneity 'test (6) under the
assumption of p; = p for every j is distributed as a noncentral
chi-square with J — 1 degrees of freedom and noncentrality
parameter

A+mpg \° |
>\D=C{m} '{jgnj(ﬂj—ﬁ)} (8)
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Table 3
Empirical Type 1 error rates of homogeneity tests for k) = kg = k3 = & (10,000 simulations)
=y = mg = 20 m = 30, ny = 20, ng = 10
(1,21, ) X X X @ o X xp X3
(0.1, 0.3, 0.5) 0.2 036 054 055 232 031 065 063 206
04 .044 047 .053 .326 .042 .058 .061 .235
0.6 0.44 .054 .060 .299 044 .058 .063 227
0.8 .053 .070 071 .209 .046 .068 .064 .148
(0.3, 0.4, 0.5) 0.2 .046 .053 .053 111 .040 .055 .055 131
04 .049 .057 .058 103 045 .052." .053 121
0.6 .046 055 .056 .080 .048 .058 .060 .158
0.8 037 045 .045 .047 .040 .049 .049 .140

Note: X2, X (2;, X 2D, and X%. refer to statistics for testing homogeneity of kappas using the score, goodness-of-fit, modified score, and Fleiss

methods, respectively.

where ¢ =1 -2k + &(2 — 8}/{2(1 — R)pg}. The power of the
test can be obtained from tables of the cumulative noncentral
chi-square distribution (Haynam, Govindarajulu, and Leone,
1970).

Define design parameters as t; = n;/n. for j =1, 2,...,J.
From the noncentrality parameter Ap, the total sample size
required for power 1 — 3 of the modified homogeneity score
test at level a can be found by -

n.=)\(J—-1,1—ﬁ,a)/
J J 2 J .
{th%'d?— (thdj> /(th/cj)}v )

where A(J — 1,1 — 3, ) is the value of the noncentrality pa-
rameter of the cumulative chi-square distribution correspond-
ing to power 1 — 3 and level a, e.g., A (1, 0.8, 0.05) = 7.849 for
J =2, 80% power and 5% level. The approximate sample size
for the jth group is n; = t; - n.. Similarly, we can find the sam-
ple size for a given power of the test (6) from Ay, (8). Under
p; = p for every j, the second terms of (7) and (9) are zero.

The GOF test for homogeneity under the alternative is
asymptotically a noncentral chi-square with J — 1 degrees
of freedom and noncentrality parameter

2

J
A =) ny{Pilr;,p;)

i=0 j=1

— Pii(&,p;)Y*/Pij(R,p;) (10)

(e.g., Donner, 1998), which under the assumption that p; =
p for every j reduces to

:(llfk){1+n+(1 }{Xjnj(nJ 2}. (11)

From )g, we have the total sample size required for a study
as

2 J
n=XAJ-1,1 —ﬂ,a)/[zztj{Pij(Kfjvpj)

i=0 j=1

Xe

—Pij(k7pj)}2/Pij(RapJ'):| - (12)

For the special case that n; = n and under p;
have

= p for all j, we

n=A<J—1,1-g,a>-<1—n>/

[pq{1+ K+(1_K)2} Z(Ka —K)]

Using (9) and (12), approximate sample sizes required for
80% power of the score and GOF tests using Ap for detecting
heterogeneity of two kappa statistics at a = 0.05 for various
values of the prevalence rate, kappa coefficient and design pa-
rameters are summarized in Table 4. The sample size required
for a given power of the score test is always smaller than that
of the GOF test, except when m = 0.5, in which case
they are equal. A very la.rge sa.mple size is needed when the
difference between two kappas is small and/or [p's —0.5| is
large. Numerical investigation shows that the balanced design,
t = t, = 0.5, is most efficient. Similar observations are found
for sample size requirement for 80% power of the homogeneity
tests at & = 0.05 for J = 3. A simulation study was performed
to examine whether the asymptotic sample size formula (9)
and (12) can be satisfactorily applied in finite samples. Ta-
ble 4 shows that the actual power of the homogeneity test
for given approximate sample size was reasonably close to the
nominal power for both the modified score and the GOF tests.
In particular, sample sizes calculated under a balanced design
(ti = t,) provided the intended power on average. Those un-
der an unbalanced design tend to be either slightly underes-
timated or overestimated, depending on (t; < t,) or (& > #).
The actual levels of both the modified score and the GOF
tests are anticonservative. The former is a little more conser-
vative than the latter.

5. Estimation of Common Kappa

When several kappa. statistics from independent studies or a
stratified study are given, we would like to examine the ho-
mogeneity of kappas. An estimate of the common kappa is
required for constructing a homogeneity test. If the homo-
geneity assumption is reasonable, the estimate of the com-
mon kappa can be used a8 appropriating summary measure
reliability.
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Table 4
Sample-size requirements for 80% power of homogeneity tests for kappa statistics at a .05 for J = 2 (numbers in parentheses are
empirical powers)

th =6 =05 t = 0.25, {, = 0.75 t = 0.75, & = 0.25

P pr K & Modified score X3 GOF X% Modified score X4, =~ GOF X2  Modified score X3, GOF X2
01 03 02 04 1,153 (.80) 1,207 (.80) 1,774 (.81) 1,882 (.81) 1,308 (.78) 1,342 (.79)
0.6 266 (.80) 281 (.80) 386 (.77) 413 (78) 317 (79) 329 (.82)

0.8 98 (.80) 104 (.82) 122 (.78) 129 (.78) 132 (.83) 138 (.83)

04 06 995 (.79) 1,054 (.79) 1,494 (.78) 1,597 (.80) 1,159 (.79) 1,210 (.80)

0.8 195 (.79) 206 (.79) 256 (.76) 269 (.75) 259 (.83) 270(.83)

0.6 0.8 665 (.77) 697 (.79) 939 (.75) 986 (.76) 832 (.82) 865 {.79)

02 02 02 04 970 (.79) 1,000 (.81) 1,272 (.78) 1,315 (.80) 1,302 (.79) 1,334 (.79)
0.6 232 (.82) " 241 (78) 283 (.79) 294 (.81) 323 (.80) 333 (.78)

0.8 94 (.83) 98 (.83) 99 (.77) 103 (.78) 141 (.83) 146 (.84)

04 0.6 848 (.80) 883 (.78) 1,061 (.76) 1,106 (.78) 1,189 (.81) 1,237 (.80)

0.8 184 (.81) 192 (.81) 199 (.81) 206 (.78) 283 (.81) 294 (.82)

0.6 08 596 (.79) 618 (.79) 687 (.77) 710 (.77) 894 (.80) 929 (.83)

Average power .80 .80 _ .78 . .78 81 81

Consider the estimation of a common kappa, k, over J The variance is approximated as

strata or J sets of data. The MLE of « based on the
pooled data is &, = (4w 1y, — 73 )/ {(252. + 31.) (220, + 1)},
where summation is denoted by dots, e.g., z; = Z].=l z; for
1= 0, 1, and 2. The pooled kappa is not a consistent esti-
mator, unless p; = p for every j. A chi-square GOF test for
kj=xandp; =pforj=1,2,...,J can be used to determine
whether pooling is appropriate.

The MLEs of a common kappa and the nuisance parame-
ters, & and p;s, cannot be expressed in a closed form. They
can be obtained by an iterative procedure (see the Appendix).
From the inversion of the information matrix, we obtain the
variance of the MLE of « as

v =0 "‘)/ [Z -Ra-29 +2<2—~)/<2p,-q,~)}]'

(13)

The asymptotic variance of the MLE of « for a single set
(e.g., Bloch and Kramer, 1989) is a special case of (13) for
J=1

Consider noniterative estimators. Similar in form to the
Mentel-Haenszel estimator, the ratio of the sum of numer-
ators and the sum of denominators fron* individual &;'s,
Rvm = 2 (4zy5T0;5 — 3’1])/2 (2x95 + m1;) (2205 + T5) s
consistent. Lettmg bh=2(1- n) (1 — 2k) and b2 =k (2 - k),
the asymptotic variance is found as

var(Avu) = (1 - N){bl (Zniz’?qf) +b <Zn§quj) }

2
/ (rima)' ). (19
Donner et al. (1996) suggested an estimator of x as
ko= "jﬁjﬁj'%/ ( > "jﬁjtij)- (15)
J J

o) = (- ~>{”2(Zj:"f"’jé"> i (Zj:"jp?qz) }
()

When n; = nfor e.very J, the Ry and &p are identical. Denot-
ing w; = {var(&;)}', a weighted average of individual kappa
- is written as

= Zw]n,/(ZwJ) where &; = {va.r(n,)}n_,cj,pj_pj,

(17

(e.g., Fleiss, 1981). An approximated variance of &, is ex-
pressed as var(&,) ~ (Sw;)~! (e.g., Fleiss and Davies, 1982)
which is smaller than the true variance. The Ap and &, are
both consistent. The weighted kappa is undefined whenever
any p;g; is zero, while the Ay and Ap are defined, unless all
P;d;’s are zero.

(16)

6. Numerical Evaluation on Noniterative Estimators

To evaluate the bias and mean square errors of the non-
iterative estimators for small or medium sample sizes, a sim-~
ulation study for the case of two strata was performed under
the following configuration: (p, p2) = (0.1, 0.5), (0.2, 0.5),
(m, mp) = (20, 30), (40, 60), « = 0.1, 0.3, 0.5, 0.8. Results are
summarized in Table 5. The bias of &, was not reduced by
increased sample size when the p’s were different, demonstrat-
ing the inconsistency of the pooled estimators. The absolute
bias and mean square error of the weighted estimator were
far greater than those of Avg and Ap. Since &; and &; are
correlated, the K, had relatively large bias and standard er-
ror, particularly for a small sample size. The estimators, Avu
and Ap, had smaller absolute bias and mean square error. As
n;’s increase, the bias and the mean square error of each esti-
mator approached zero and the square root of the asymptotic
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Table 5
Bias and mean square error based on 10,000 ssmulations

(n1, p2) K &, bias (MSE!/?) vy bias (MSEY/2) ip bias (MSE!/?) &, bias (MSE!/?)

n = 20, n, = 30

(0.1, 0.5) 0.1 .146 (.205) —.018 (.167) —.019 (.162) —.103 (.178)
0.3 113 (.177) —.016 (.160) —.017 (.158) —.147 (.266)
0.5 .080 (.146) —.013 (.147) —.014 (.146) -.160 (.319)
0.8 .031 (.090) —.007 (.103) —.008 (.103) —.164 (.348)

(0.2, 0.5) 0.1 .074 (.161) —.019 (.156) —.020 (.152) —.065 (.186)
0.3 .057 (.148) ~.017 (.150) —.018 (.148) ~.053 (.206)
0.5 .041 (.130) —.013 (.138) -.014 (.136) —.031.(.198)
0.8 .015 (.087) —.007 (.097) —.008 (.096) —.033 (.154)

n = 40, np, = 60 '

(0.1, 0.5) 0.1 .150 (.181) —.008 (.115) —.009 (.111) ~.070 (.145)
0.3 .115 (.150) —.010 (.114) —.010 (.112) —.070 (.196)
0.5 .083 (.120) —.007 (.104) —.007 (.103) b —.045 (.195)
0.8 .033 (.067) —.004 (.071) —.004 (.070) —.026 (.159)

(0.2, 0.5) 0.1 .078 (.127) —.009 (.107) —.010 (.104) —.029 (.122)
0.3 059 (.113) —.010 (.107) —.010 (.105) —.016 (.123)
0.5 .043 (.097) —.007 (.098) —.008 (.096) —.000 {.110)
0.8 - .017 (.061) —.004 (.066) —.004 (.066) .007 (.070)

variance, respectively. The mean square error of Ap tended
to be slightly smaller than that of Amz. Results for (ny, ng) =
(10, 40) and (20, 80) lead to similar conclusions.

The asymptotic standard errors (the square root of the
asymptotic variance) of Avu, Ap and K were calculated for
various values of parameters and sample size from (14), (16),
and (13) and summarized in Table 6. The estimators, Avm
and kp possess. high relative efficiency, close to 100%. In par-
ticular, Kp is virtually fully efficient.

7. Interval Estimation of Common Kappa

Consider interval estimation of intraclass kappa coeffi-
cient across strata. The likelihood score and its vari-

E_-; var{S«(x,p;)}, where Sk(k,p;)= {3321'/,(1" +g;K) +
zo;/(¢; + pjr) — n;}/(1 — k) and  var{S.(x,p;)} =
n;/[(1 - £){(1 - £)(1 — 2k) + &(2 - £)/(2p;q;)}]. As  n; —
oo for j = 1,2,...,J, zu(k, 5') = Su(r,5)/[var{ (s, 5") }L2
is asymptotically normal with mean zero and variance
one. For each j,p' is the MLE of p; for a given value of
x and a solution of dlnL;/8p; =0, which is a root of a
cubic equation, aq;P} + a1;§} + az;P; + az; = 0 where ao; =
2n;(1 = )% 01 = —{3n;(1 — k) + o35 — 20 }(1 — &), az; =
2172_,' + 1 — 2(2n,~ — 170]')16 +TLJ'K2 and az; = (131]' + :02]-)'5 for
i=1,2,...,J. The approximate 1 — a confidence limits of &
using the score method is found by solving

ance are Se(k,p) =), Sx(x,p;) and var{S«(k,p)}= 22K, P') = 2p ) (18)
Table 6
Standard errors of Aypy, Rp, and Ry
n =20, n =30 m =10, i, = 40

(0.1, 0.5) 0.1 161 .156 153 .154 .148 .146
0.3 157 .154 .154 148 144 144
0.5 .143 142 142 134 131 131
0.8 .100 .099 .099 .093 .091 .091

(0.2, 0.5) 0.1 151 .147 .146 152 144 . 143
0.3 147 144 144 .146 .139 ’ .139
0.5 134 132 132 132 127 127
0.8 .093 .092 .092 .092 .088 .088

: ny = 40, n, = 60 n = 20, np, = 80

(0.1, 0.5) 0.1 114 111 .108 .109 .105 .104
0.3 111 .109 .109 .105 .102 .101
0.5 101 .100 .100 .095 .093 .093
0.8 .070 .070 .070 .066 .064 .064

(0.2, 0.5) 0.1 .107 .104 .103. 107 102 101
0.3 .104 102 .102 .103 .098 .098
0.5 .095 .094 .094 .094 .090 .090
0.8 .066 .065 .065 .065 .062 .062




Homogeneity Score Test for the Intraclass Version of the Kappa Statistics

where p' is a vector of MLEs of p for a given
value of k. There is only one relevant root,
P = —2(—¢y;/3)/* - cos(m /3 +0,/3) — by; /3 where cos8; =
(27)1/2 -ozj/{2clj(1 -—-Clj)l/2} with bij = aij/a0j for i = 1,
2, 3 and C2j = b3_7' - bljsz/3+ 2(b13/3)3 for J = 1,2, . ,J
The lower and upper limits are found by an iterative
procedure. This is an extension of the method of in-
terval estimation of the kappa coeflicient using the
likelihood score method (Nam, 2000). From Section 5,
we have simple confidence intervals for x estimates as
AMa £ 2(a/2) {an‘(fcMH)}lﬂ, Ap £ a2 {Vﬁ.r(i'\ip)}l/2 and
Rw £ 2(a 2 - {v81(Rw)}/2. These methods are noniterative
and computationally simple. However, for a small sample
size and strong kappa agreement, the upper limit of a simple
(1 — @) confidence interval for x may be greater than
one. To remedy an unacceptable upper limit, we may use
a transformation of & similar to Fisher's z-transformation
of a sample correlation coefficient (Fisher, 1921), e.g.,
g(R) =In{(1+R)/(1 — &)} where & may be Amm, Ap, Ru

or %. The asymptotic variance of g(k) is var{g(8)} = 4-

var(k)/(1-x?)? using the delta method. A simple (1 — )
confidence interval is given as g(R) £ z(o,y - [vér{g(k)}}'/2.
By transforming endpoints of this confidence interval back to
the original scale of &, we have adjusted confidence limits that
are within [—1, 1]. The score method (18) always provides a
permissible interval and a reliable confidence coefficient.

As an example, consider two sets of data: xy =2,
I = 1,301 =17 for the first set and Tog = 5,2212 =1 and
g3 = 8 for the second set, the estimated marginal proba-
bilities of a positive rating and the kappas are §; = 0.125,
P2 = 0.393,%; = 0.771 and R, = 0.850. The homogeneity of
the two kappa coefficients is not rejected by the homdgene—
ity tests (p values ~ 0.75). Crude 95% confidence intervals for
a common kappa using Ayn,Rp, R, and & with correspond-
ing standard errors are (0.569, 1.055), (0.578, 1.060), (0.590,
1.066), and (0.573, 1.059), respectively. The various confi-
dence intervals are somewhat similar. The upper limits are not
acceptable, because they exceed one. Applying Fisher’s z-like
transformation, the corresponding adjusted simple confidence
intervals are {0.382, 0.953), (0.398, 0.955), (0.404, 0.958), and
(0.400, 0.953). The upper bounds are less than one. Using the
score method (18), we obtain the admissible 95% confidence
interval as (0.462, 0.951). Note that the length of the confi-
dence interval by the efficient score method is smaller than
those of adjusted simple intervals. The 95% confidence inter-
val found by the GOF procedure (Donner and Eliasziw, 1992)
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or the score method (Nam, 2000) on pooled data may be used
as a trial interval.

8. An Example

Twins on Drinking Status: Equal numbers of male twins and
female twins, and equal numbers of monozygote (MZ) and
dizygote (DZ) pairs in Melbourne, Australia, were randomly
drawn from the Australian National Health and Medical
Council Twin Registry for a voluntary interview. Seventy-
five pairs were invited for an interview from each sex by
zygosity. The drinking information from 181 twin pairs is
summarized in Table 7 (Hannah, Hopper, and Mathews,
1983). '

For males, the four different homogeneity tests (2), (3),
(4), and (5), each led to a p value = 0.02: the twin correlation
of MZ twins (&, = 0.462) was significantly larger than that
of DZ twins (A, = —0.033) in drinking étatus. For females,
the four homogeneity tests gave p values (0.55 ~ 0.56): the
kappa agreement of MZ and that of DZ twins, &; = 0.474
and Ry = 0.360, were not significantly different. Estimates of a
common kappa for females were £p = 0.414, &, = 0.417, and
& = 0.413. The Ap estimate was almost the same as the MLE
k. Note that the second term of (3) was zero for both male
and female twins when &p was used. The homogeneity score
test using a simple estimate (Ap) was similar ta_that using
the MLE of a common kappa in this example. The assumption
of py = p, was quite reasonable for both male and females.
Using (6) under p; = p;, the homogeneity test for kappa’s of
MZ and DZ twins for males provided p value = 0.023 and
for females gave p value = 0.58. They were slightly larger
than those values obtained without the assumption of equal
prevalence. For males, the kappa agreement on alcohol use for
MZ twin pairs was significantly greater than that of DZ twins.
For females, although the kappa agreement for MZ twins was
not significantly different from that for DZ twins, the former
was larger than the latter. Hannah et al. (1983) suggested
that the MZ twins were more concordant than the DZ twins
on alcohol use.

9. Discussion

In assessing the degree of agreement in a reliability study,
researchers may have a specific value of kappa in mind.
Nam (2002) presented an efficient statistic for testing the
strength of kappa agreement using the likelihood score
and derived a sample size formula for designing a study.
In the current article, we investigate statistical methods

Table 7
Like-sex twin pairs by sex, zygosity, and drinking status
. Male Female
Alcohol drinking MZ DZ Total MZ DZ Total
Both 19 8 27 11 10 21
One 14 _ 16 30 11 15 26
Neither 19 7 26 23 28 51
Total 52 31 83 45 53 98
Di 0.500 0.516 0.367 0.330
R;+= SE 0.462 + 0.123 —0.033 £ 0.179 0.474 £ 0.136 0.360 £ 0.135
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involving a comparison of several kappa statistics, sam-
ple size requirement for a set of multiple reliability stud-
ies, and estimation of a common kappa using all available
information.

Power is highly correlated with the type 1 error probabil-
ity. Since the actual type 1 error rates for a nominal level of
the homogeneity tests are not the same for small or moderate
sample sizes, a comparison of tests using empirical power is
not straightforward. The power of an anticonservative test is
inflated, while that of a conservative test is deflated: Com-
parison would require careful adjustment of the nominal level
of each test so that the actual levels of the tests become the
same for a given configuration; then, using the adjusted nom-
inal level, we could generate the power and compare them
with equal type 1 error rates. Using repeated trials, for ex-
ample, we obtain adjusted critical values of the score, GOF
and modified score tests at an empirical level of 0.05 as 3.40,
3.74, and 3.86 for given (p1, p;) = (0.2, 0.3) and (n;, m) =
(20, 30). Empirical powers of the score, GOF and modified
score tests for x; = 0.1 and &, = (0.1, 0.3, 0.5, 0.7, 0.9) are
(.050, .101, .289, .575, .906), (.050, .100, .294, .565, .8957, and
(.050, .101, .286; .566, .894), respectively. The three tests are
comparable in power, with a slight advantage by the score
test. o

Since the kappa statistic depends on the prévalence or
base rate, some authors, e.g., Thompson and Walters (1988),
warned against a comparison of kappa statistics when the
prevalence of several studies are different. Others, e.g., Donner
et al. (1996), suggested that a comparison of kappa statis-
tics under no assumption of equal prevalence could provide
a meaningful assessment on levels of interobserver agreement
when the difference among prevalence was not a major con-
cern. They called this a “pragmatic approach.” They also
noted the difficulty involving validation of equal prevalence
in a typical reliability study. _

When homogeneity of kappa statistics is not rejected, we
may have an interest in a confidence interval for the common
kappa, for the evaluation of the kappa agreement coefficient.
An efficient interval estimation of the kappa coefficient is de-
rived by extending the likelihood score method (Nam, 2000).
The. GOF procedure can be also used to derive a.relevant
confidence interval.

When homogeneity is rejected, we may proceed with a fur-
ther analysis to investigate the source of heterogeneity. We
may partition heterogeneity chi-square approximately into
orthogonal components related to specific sources of varia-
tion, and examine the significance for each component (e.g.,
Donner and Klar, 1996). We can investigate a similar ap-
proach using the heterogeneity score method.

If both assumptions of homogeneity of kappa’s and equal
prevalence across strata are valid, then we could perform sta-
tistical analysis on the pooled data. However, if the equality
of prevalence is not valid, the pooled estimator of a common
kappa is not consistent. We should be cautious when pooling
data for the assessment of a common kappa in this situation.
The homogeneity test based on the GOF procedure and the
modified score test are generally close to the homogeneity
score method using MLEs of parameters, which is theoreti-
cally optimum.
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RESUME

Quand le coefficient de corrélation intra-classe ou sa version
équivalente du coefficient d’agrément kappa ont été estimés
& partir de plusieurs études indépendantes ou d’une étude
avec stratification, nous nous trouvons devant le probléme
de la comparaison de statistiques kappa et de la combinaison
d’information sur ces statistiques en un kappa commun quand
leur supposition d’homogénéité est satisfaite. Dans cet arti-
cle, en utilisant la théorie de vraisemblance du score étendue
aux parameétres de nuisance (Tarone, 1988) nous présentons
un test d’homogénéité efficace pour comparer plusieurs statis-
tiques kappa indépendantes et, de surcroit, nous donnons
une méthode du score d’homogénéité modifiée en employ-
ant comme alternative un estimateur non-itératif et consis-
tant. Nous fournissons la taille d’échantillon en employant la
méthode du score d’homogénéité modifiée et nous la com-
parons & celle de la qualité d’ajustement (GOF) (Donner,
Eliasziw et Klar, 1996). Une étude de simulation pour des
tailles d’échantillon faibles et modérés a montré que le niveau
actuel du test du score d’homogénéité employant les estima-
teurs du maximum de vraisemblance (MLEs) des parameétres
est, de maniére satisfaisante, proche du nominal et qu’il est
plus faible que ceux du score d’homogénéité modifiée et des
tests de la qualité d’ajustement. Nous étudions les propriétés
statistiques de plusieurs estimateurs non itératifs d’un kappa
commun. L’estimateur (Donner, Eliasziw et Klar, 1996) est
essentiellement efficace et peut étre employé comme une al-
ternative au MLE. itératif. Nous présentons une estimation
par intervalle efficace d'un kappa commun en employant la
méthode de vraisemblance du score.
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APPENDIX

Mazximum Likelihood Estimators of a Common Kappa and
Nuisance Parameters

From the second partials of (1), we have the (J+1) x
(J +1) information matrix I whose elements are

& InlL 14+« 750545
I = -F — . 3Di4; ,
® < K2 > 1-k zj:(pj+qg"€)(qg' + pjK)
n;(pj ~ g;)k

8 InL
Iog = ~E (anap,-) B

t

8*InL
1 =-(%5) -

Liy = 0forj#j'.

Note that the subscripts 0 and j of the information matrix
are related to partials with respect to « and p; for notational
simplification. Denote the vectors of parameters and scores
asw = (k, p) and S (7)) = (% (x), St (k, p1),..., S (K, p;))

where
Selm) = 3" Sulr, py) = P _n,.)
; g; t+p;K

(p; + qik)(g; +p;K)’

n;{2p;¢;(1 — K)(1 — 2K) + K(2 — )}
Piq; (PJ +‘IJ'°)(QJ + k)
forj=1,2,...,J,

T4

1 .
l—n‘;(Pj+qj&

and C
Toj + %13 Toj + Ty
Sk, p;) = =2 L -
S5, 23) = :
T2y Zoj
+(1—k)- =
( ) (pj+qjﬂ q; +Pj'°)
for j = 1, 2,...,J. Letting the initial vector of = be

.,P1), we have the 1st iterated values as
1) _ < -
#W =5 )+[I] 7o) S(‘I\'())

The procéss is repeated until it converges.

;"_(a) = (Ryﬁl,



